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Abstract  

From the field equation in ~b of the author's general-relativistic scalar field theory in the 
complex Weyl space an infinite set of Yukawa type equations, representing potential 
fields, arising from zero rest mass particles is obtained. The simplest of these equations 
is solved and is used in a nucleon model as the origin of a gravitationally stabilized nucleon. 
This procedure leads directly to an expression that predicts the representative nucleon 
radius of 1.21 fm. 

1. Relative Scalar Fields f o r  Zero Res t  Mass  Particles 

I f  a funct ion o f  the coordinates ~b = ~b(Xu ) transforms, under  a coordinate  
t ransformation,  as 

=jw~ (1.1) 

where J is the Jacobian o f  the t ransformat ion and w is a constant ,  then ~b is 
called a relative scalar o f  weight w. I f  w = 0, ~b is called an absolute scalar 
and i fw = 1, ~b is given the name 'scalar density'  or  'pseudoscalar '  (Thomas,  
1965; Sokolnikoff,  1964; MMler, 1952). In the general relativistic scalar 
field theory in the complex Weyl space (Cherry, 1971a) the field equat ion 
for  such scalars has the fo rm 

where the colon nota t ion specifies covariant  differentiation for  relative 
tensors, Rp~ is the Ricci tensor taken in the complex Weyl space and 
K = rn o c/I~. In this discussion we will consider only particles with zero rest 
mass so that  we have K -+ 0. In addition, we note that the complex Weyl 
space reduces to the real Riemann space with the vanishing of  the com- 
ponents  o f  the electromagnetic 4-potential q~z, that  appear  in ~b..p..~ and 
Rpo of  equat ion (1.2) (Cherry, 1971a). As a consequence of  letting ~b~ = 0 
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we have -qP~ -+ gP~, where gP~ is the metric tensor of the Riemann space. 
In this latter space Einstein's field equations hold so that we have 

Rp~ = 0 (1.3) 

In view of the zero rest mass specification and equation (1.3) the second 
term of equation (1.2) vanishes and we therefore seek expressions of the 
form 

- w ,p + w 2 = 0 ( 1 . 4 )  

Restricting our attention to problems with spherical symmetry we may 
adopt the line element 

ds2 = -goo cZ dt2 + gl l  dr2 + r2( d02 + sin 2 0 d~ 2) (1.5) 

which with equation (1.3) gives the 'Schwarzschild' solution 

1 b 
g00 = - -  = 1 - - ,  b t> 0 (1.6) 

gix r 

where b is a constant of integration. We now consider the Yukawa speci- 
fication ~b = ~b(r) in which case equation (1.4) with equation (1.6) reduces to 

[(r 2 - br) 4']' - 4w(r - b) ~' - w[l - 4w(1 - b/r)] $ = 0 (1.7) 

where the primes denote differentations with respect to r. Equation (1.7) 
includes all of  the scalar equations in this theory that are applicable in 
Yukawa theory for zero rest mass particles with spherical symmetry. In 
particular for ~b as an absolute scalar (w = 0) we have 

[@2 - b r )  ~b']' = 0, w = 0 (1.8) 

This equation differs from the expression obtained from Klein-Gordon 
theory by the term -br .  If  there were no gravitational field (b = 0) we would 
obtain the usual Coulomb solution for $ in equation (1.8). 

2. Gravitationally Stabilized Nucleons 

According to the Yukawa prescription equation (1.8) implies that there 
exists an interaction potential 

arising from particles with zero rest mass. We note tu equation (2.1a) 
that 

a I[b 1 [b\  2 1 /b \3  ], 
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and that for r ~ oo 

Voo ,~ - al + a2 (2.3) 
r 

and setting the potential equal to zero for r = 0% implies a2 = 0. We, 
therefore, finally have 

Equation (2.1b) can have physical meaning, of course, only after the 
integration constants (b,al) are identified. In previous work (Cherry, 
1971a; Cherry, 1971b) on the generalized gravitational potential we 
established that b----ro All3 where r0 is the nucleon core radius and A is 
the irlass number. We now specify that al is related to the pion-nucleon 
coupling constant by 

/Ttrr 
al = g o - -  (2.4a) 

r/'/n 

where go is the strong interaction coupling constant such that 

g~ ~ 15hc (2.4b) 

and where rn~ and m, are the pion and nucleon rest masses, respectively. 
If  equation (2.1 b) together with the identification of  b and equations (2.4a, b), 
is now assumed to represent the gravitational field responsible for nucleon 
stability and that 

co 

E =  mnc 2 =�89 f gZ d~" (2.5) 
R 

where the intensity • = - d V [ d r  and R is some nucleon radius, we obtain 

[ m,,\ z)t. 
R = ro + i g o r )  

~ro+15)L,(~-~) z, A"= h "m,c (2.6a) 

The value for r0 was previously determined from this theory when applied 
to the pionic atom (Cherry, 1971b) where it was found that for best fit with 
experimental data that r0 ---0.78 fro. Using this value for ro we find from 
equation (2.6a) that R ~ 1.21 fro. This value for the nucleon radius is 
comparable to the 'electromagnetic' radius (Hofstadter, 1956), or 'nuclear 
radius constant' (DeBenedetti, 1964) obtained from electron and t~-meson 
scattering experiments, and is also comparable to the 'Coulomb radius 
constant' (Marmier & Sheldon, 1969) obtained from the Coulomb term 
of the nuclear binding energy formula directly, as well as those results from 
mirror nuclei. 
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Alternately, we could have obtained an expression predicting the nucleon 
mass, namely, 

m,=[R2~ro(g~ (2.6b) \ -Z- I  j 

provided the experimental determination of each constant on the right 
side of  this equation does not require explicit use of the nucleon mass. 
Precision in the determination of m, in this way is at present, of  course, 
quite limited. The use of  equation (2.5) implies, that the rest mass energy 
of the nucleon is equivalent to the energy required to disassemble the nucleon 
mass f rom a spherical shell of  radius R to infinity, in a potential field given 
by equation (2.1 b). In a more refined description of  nucleon structure where 
the mass is distributed throughout the nucleon volume use of  equations 
(2.1b) and (2.5) would lead to larger values of  the nucleon mass than that 
obtained with equation (2.6b). This increased mass is compensated, however, 
by the equivalent mass arising f rom the energy of nucleon spin and Coulomb 
repulsion, that have not been taken into account with the use of equation 
(2.5). i t  is finally noted from the range of the static field of  equation (2.1b) 
that  nucleons can be formed without the nucleon constituents first assuming 
nuclear proximity. 
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